Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Front Immunol ; 13: 899569, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35799794

RESUMEN

We identified Pycard and BC017158 genes as putative effectors of the Quantitative Trait locus (QTL) that we mapped at distal chromosome 7 named Irm1 for Inflammatory response modulator 1, controlling acute inflammatory response (AIR) and the production of IL-1ß, dependent on the activation of the NLRP3 inflammasome. We obtained the mapping through genome-wide linkage analysis of Single Nucleotide Polymorphisms (SNPs) in a cross between High (AIRmax) and Low (AIRmin) responder mouse lines that we produced by several generations of bidirectional selection for Acute Inflammatory Response. A highly significant linkage signal (LOD score peak of 72) for ex vivo IL-1ß production limited a 4 Mbp interval to chromosome 7. Sequencing of the locus region revealed 14 SNPs between "High" and "Low" responders that narrowed the locus to a 420 Kb interval. Variants were detected in non-coding regions of Itgam, Rgs10 and BC017158 genes and at the first exon of Pycard gene, resulting in an E19K substitution in the protein ASC (apoptosis associated speck-like protein containing a CARD) an adaptor molecule in the inflammasome complex. Silencing of BC017158 inhibited IL1-ß production by stimulated macrophages and the E19K ASC mutation carried by AIRmin mice impaired the ex vivo IL-1ß response and the formation of ASC specks in stimulated cells. IL-1ß and ASC specks play major roles in inflammatory reactions and in inflammation-related diseases. Our results delineate a novel genetic factor and a molecular mechanism affecting the acute inflammatory response.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD , Inflamasomas , Animales , Proteínas Adaptadoras de Señalización CARD/genética , Proteínas Adaptadoras de Señalización CARD/metabolismo , Ligamiento Genético , Inflamasomas/genética , Inflamasomas/metabolismo , Inflamación/genética , Inflamación/metabolismo , Ratones , Sitios de Carácter Cuantitativo
2.
Front Immunol, v. 13, 899569, jun. 2022
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4428

RESUMEN

We identified Pycard and BC017158 genes as putative effectors of the Quantitative Trait locus (QTL) that we mapped at distal chromosome 7 named Irm1 for Inflammatory response modulator 1, controlling acute inflammatory response (AIR) and the production of IL-1β, dependent on the activation of the NLRP3 inflammasome. We obtained the mapping through genome-wide linkage analysis of Single Nucleotide Polymorphisms (SNPs) in a cross between High (AIRmax) and Low (AIRmin) responder mouse lines that we produced by several generations of bidirectional selection for Acute Inflammatory Response. A highly significant linkage signal (LOD score peak of 72) for ex vivo IL-1β production limited a 4 Mbp interval to chromosome 7. Sequencing of the locus region revealed 14 SNPs between “High” and “Low” responders that narrowed the locus to a 420 Kb interval. Variants were detected in non-coding regions of Itgam, Rgs10 and BC017158 genes and at the first exon of Pycard gene, resulting in an E19K substitution in the protein ASC (apoptosis associated speck-like protein containing a CARD) an adaptor molecule in the inflammasome complex. Silencing of BC017158 inhibited IL1-β production by stimulated macrophages and the E19K ASC mutation carried by AIRmin mice impaired the ex vivo IL-1β response and the formation of ASC specks in stimulated cells. IL-1β and ASC specks play major roles in inflammatory reactions and in inflammation-related diseases. Our results delineate a novel genetic factor and a molecular mechanism affecting the acute inflammatory response.

3.
Toxins, v. 14, n. 1, 1, dez. 2021
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4101

RESUMEN

β-defensins are antimicrobial peptides presenting in vertebrate animals. They participate in innate immunity, but little is known about them in reptiles, including snakes. Although several β-defensin genes were described in Brazilian snakes, their function is still unknown. The peptide sequence from these genes was deduced, and synthetic peptides (with approximately 40 amino acids and derived peptides) were tested against pathogenic bacteria and fungi using microbroth dilution assays. The linear peptides, derived from β-defensins, were designed applying the bioisosterism strategy. The linear β-defensins were more active against Escherichia coli, Micrococcus luteus, Citrobacter freundii, and Staphylococcus aureus. The derived peptides (7–14 mer) showed antibacterial activity against those bacteria and on Klebsiella pneumoniae. Nonetheless, they did not present activity against Candida albicans, Cryptococcus neoformans, Trychophyton rubrum, and Aspergillus fumigatus showing that the cysteine substitution to serine is deleterious to antifungal properties. Tryptophan residue showed to be necessary to improve antibacterial activity. Even though the studied snake β-defensins do not have high antimicrobial activity, they proved to be attractive as template molecules for the development of antibiotics.

4.
Sci Rep ; 11(1): 23712, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34887428

RESUMEN

The important pharmacological actions of Crotoxin (CTX) on macrophages, the main toxin in the venom of Crotalus durissus terrificus, and its important participation in the control of different pathophysiological processes, have been demonstrated. The biological activities performed by macrophages are related to signaling mediated by receptors expressed on the membrane surface of these cells or opening and closing of ion channels, generation of membrane curvature and pore formation. In the present work, the interaction of the CTX complex with the cell membrane of macrophages is studied, both using biological cells and synthetic lipid membranes to monitor structural alterations induced by the protein. Here we show that CTX can penetrate THP-1 cells and induce pores only in anionic lipid model membranes, suggesting that a possible access pathway for CTX to the cell is via lipids with anionic polar heads. Considering that the selectivity of the lipid composition varies in different tissues and organs of the human body, the thermostructural studies presented here are extremely important to open new investigations on the biological activities of CTX in different biological systems.


Asunto(s)
Membrana Celular/química , Membrana Celular/metabolismo , Crotoxina/química , Crotoxina/metabolismo , Macrófagos/metabolismo , Termodinámica , Algoritmos , Animales , Crotalus , Técnica del Anticuerpo Fluorescente , Humanos , Cinética , Modelos Teóricos , Estructura Molecular , Unión Proteica , Análisis Espectral , Relación Estructura-Actividad , Células THP-1
5.
Toxins (Basel) ; 14(1)2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-35050978

RESUMEN

ß-defensins are antimicrobial peptides presenting in vertebrate animals. They participate in innate immunity, but little is known about them in reptiles, including snakes. Although several ß-defensin genes were described in Brazilian snakes, their function is still unknown. The peptide sequence from these genes was deduced, and synthetic peptides (with approximately 40 amino acids and derived peptides) were tested against pathogenic bacteria and fungi using microbroth dilution assays. The linear peptides, derived from ß-defensins, were designed applying the bioisosterism strategy. The linear ß-defensins were more active against Escherichia coli, Micrococcus luteus, Citrobacter freundii, and Staphylococcus aureus. The derived peptides (7-14 mer) showed antibacterial activity against those bacteria and on Klebsiella pneumoniae. Nonetheless, they did not present activity against Candida albicans, Cryptococcus neoformans, Trychophyton rubrum, and Aspergillus fumigatus showing that the cysteine substitution to serine is deleterious to antifungal properties. Tryptophan residue showed to be necessary to improve antibacterial activity. Even though the studied snake ß-defensins do not have high antimicrobial activity, they proved to be attractive as template molecules for the development of antibiotics.


Asunto(s)
Antiinfecciosos/farmacología , Bacterias/efectos de los fármacos , Hongos/efectos de los fármacos , Proteínas de Reptiles/farmacología , Serpientes , beta-Defensinas/farmacología , Animales , Antiinfecciosos/química , Proteínas de Reptiles/química , Especificidad de la Especie , beta-Defensinas/química
6.
Sci Rep, v. 11, 23712, dez. 2021
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4029

RESUMEN

The important pharmacological actions of Crotoxin (CTX) on macrophages, the main toxin in the venom of Crotalus durissus terrificus, and its important participation in the control of different pathophysiological processes, have been demonstrated. The biological activities performed by macrophages are related to signaling mediated by receptors expressed on the membrane surface of these cells or opening and closing of ion channels, generation of membrane curvature and pore formation. In the present work, the interaction of the CTX complex with the cell membrane of macrophages is studied, both using biological cells and synthetic lipid membranes to monitor structural alterations induced by the protein. Here we show that CTX can penetrate THP-1 cells and induce pores only in anionic lipid model membranes, suggesting that a possible access pathway for CTX to the cell is via lipids with anionic polar heads. Considering that the selectivity of the lipid composition varies in different tissues and organs of the human body, the thermostructural studies presented here are extremely important to open new investigations on the biological activities of CTX in different biological systems.

7.
J Enzyme Inhib Med Chem ; 34(1): p. 310-321, 2019.
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15771

RESUMEN

Loxosceles spiders' venoms consist of a mixture of proteins, including the sphingomyelinases D (SMases D), which are the main toxic components responsible for local and systemic effects in human envenomation. Herein, based on the structural information of SMase D from Loxosceles laeta spider venom and virtual docking-based screening approach, three benzene sulphonate compounds (named 1, 5 and 6) were identified as potential Loxosceles SMase D inhibitors. All compounds inhibited the hydrolysis of the sphingomyelin substrate by both recombinant and native SMases D. Compounds 5 and 6 acted as SMases D uncompetitive inhibitors with Ki values of 0.49 mu M and 0.59 mu M, respectively. Compound 1 is a mixed type inhibitor, and presented a Ki value of 0.54 mu M. In addition, the three compounds inhibited the binding of SMases D to human erythrocytes and the removal of glycophorin C from the cell surface, which are important events in the complement-dependent haemolysis induced by Loxosceles venom. Moreover, compounds 5 and 6 reduced the binding of SMases to human keratinocytes membrane and the venom induced cell death. Importantly, compounds 5 and 6 also controlled the development of the necrotic lesion in an in vivo model of loxoscelism. Together, our findings indicate that the novel SMase D inhibitors presented here are able to suppress both local and systemic reactions induced by Loxosceles venoms. Since the number of Loxosceles envenomation accidents is currently growing worldwide, our results indicate that both inhibitors are promising scaffolds for the rational design of new drugs targeting SMases D from these spiders.

8.
J Enzyme Inhib Med Chem, v. 34, n. 1, p. 310-321
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2643

RESUMEN

Loxosceles spiders' venoms consist of a mixture of proteins, including the sphingomyelinases D (SMases D), which are the main toxic components responsible for local and systemic effects in human envenomation. Herein, based on the structural information of SMase D from Loxosceles laeta spider venom and virtual docking-based screening approach, three benzene sulphonate compounds (named 1, 5 and 6) were identified as potential Loxosceles SMase D inhibitors. All compounds inhibited the hydrolysis of the sphingomyelin substrate by both recombinant and native SMases D. Compounds 5 and 6 acted as SMases D uncompetitive inhibitors with Ki values of 0.49 mu M and 0.59 mu M, respectively. Compound 1 is a mixed type inhibitor, and presented a Ki value of 0.54 mu M. In addition, the three compounds inhibited the binding of SMases D to human erythrocytes and the removal of glycophorin C from the cell surface, which are important events in the complement-dependent haemolysis induced by Loxosceles venom. Moreover, compounds 5 and 6 reduced the binding of SMases to human keratinocytes membrane and the venom induced cell death. Importantly, compounds 5 and 6 also controlled the development of the necrotic lesion in an in vivo model of loxoscelism. Together, our findings indicate that the novel SMase D inhibitors presented here are able to suppress both local and systemic reactions induced by Loxosceles venoms. Since the number of Loxosceles envenomation accidents is currently growing worldwide, our results indicate that both inhibitors are promising scaffolds for the rational design of new drugs targeting SMases D from these spiders.

9.
J Pharm Pharm Sci ; 21(1): 268-285, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30011260

RESUMEN

BACKGROUND: The identification of fragment sequences, or motifs, within a therapeutic protein that may elicit an immune response when processed by T-cells can be provided by computer-aided approaches. Immunogenicity is a significant problem associated with protein therapeutics and should be investigated in the early stage of protein-based drug development to avoid treatment resistance and potentially life-threatening immune responses. PURPOSE: To provide a combined computer-aided protocol for investigating the immunogenic profile of a recombinant Kunitz-type inhibitor, which has been reported as promising antitumor agent by our research group. METHODS: The combination of databases searching (IEDB and SYFPEITHI) and molecular docking simulations was exploited, herein. This combined protocol has allowed the identification of potential epitopes before in vitro/in vivo evaluation. Predictors of human proteasome cleavage transport and major histocompatibility complex (MHC) binding were considered as overall score assigning the corresponding intrinsic potential of being a T cell epitope to each fragment sequence. The peptides or motifs better classified in the two databases were docked into the three-dimensional (3D) structure of MHC (class I and II) complex to verify the calculated binding affinity.  The binding interactions regarding the molecular recognition process by T-cells were also exploited through the MHC:ligand:T-cell complexes. RESULTS: Regarding the Kunitz-type sequence, four motifs were identified as potentially epitopes for MHC-I and three motifs were found for MHC-II. But, those motifs were classified as moderately immunogenic. Final remarks: The combined computer-aided protocol has significantly reduced the number of potential epitopes to be considered for further analysis and could be useful to identify immunogenic fragments (high, moderate and low) in protein pharmaceutics before in vitro/in vivo experimentation.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Diseño Asistido por Computadora , Epítopos de Linfocito T/efectos de los fármacos , Simulación del Acoplamiento Molecular , Péptidos/química , Péptidos/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Antineoplásicos Fitogénicos/metabolismo , Bases de Datos de Proteínas , Epítopos de Linfocito T/inmunología , Humanos , Proteínas Recombinantes/metabolismo
10.
Eur J Med Chem ; 144: 29-40, 2018 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-29247858

RESUMEN

Chagas disease, caused by the protozoan Trypanosoma cruzi, is a neglected chronic tropical infection endemic in Latin America. New and effective treatments are urgently needed because the two available drugs - benznidazole (BZD) and nifurtimox (NFX) - have limited curative power in the chronic phase of the disease. We have previously reported the design and synthesis of N'-[(5-nitrofuran-2-yl) methylene] substituted hydrazides that showed high trypanocidal activity against axenic epimastigote forms of three T. cruzi strains. Here we show that these compounds are also active against a BZD- and NFX-resistant strain. Herein, multivariate approaches (hierarchical cluster analysis and principal component analysis) were applied to a set of thirty-six formerly characterized compounds. Based on the findings from exploratory data analysis, novel compounds were designed and synthesized. These compounds showed two-to three-fold higher trypanocidal activity against epimastigote forms than the previous set and were 25-30-fold more active than BZD. Their activity was also evaluated against intracellular amastigotes by high content screening (HCS). The most active compounds (BSF-38 to BSF-40) showed a selective index (SI') greater than 200, in contrast to the SI' values of reference drugs (NFX, 16.45; BZD, > 3), and a 70-fold greater activity than BZD. These findings indicate that nitrofuran compounds designed based on the activity against epimastigote forms show promising trypanocidal activity against intracellular amastigotes, which correspond to the predominant parasite stage in the chronic phase of Chagas disease.


Asunto(s)
Nitrofuranos/química , Nitrofuranos/farmacología , Tripanocidas/química , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Línea Celular , Enfermedad de Chagas/tratamiento farmacológico , Diseño de Fármacos , Humanos , Modelos Moleculares , Relación Estructura-Actividad
11.
J. Pharm. Pharm. Sci. ; 21: p. 268-285, 2018.
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15466

RESUMEN

Background: The identification of fragment sequences, or motifs, within a therapeutic protein that may elicit an immune response when processed by T-cells can be provided by computer-aided approaches. Immunogenicity is a significant problem associated with protein therapeutics and should be investigated in the early stage of protein-based drug development to avoid treatment resistance and potentially life-threatening immune responses. Purpose: To provide a combined computer-aided protocol for investigating the immunogenic profile of a recombinant Kunitz-type inhibitor, which has been reported as promising antitumor agent by our research group. Methods: The combination of databases searching (IEDB and SYFPEITHI) and molecular docking simulations was exploited, herein. This combined protocol has allowed the identification of potential epitopes before in vitro/in vivo evaluation. Predictors of human proteasome cleavage transport and major histocompatibility complex (MHC) binding were considered as overall score assigning the corresponding intrinsic potential of being a T cell epitope to each fragment sequence. The peptides or motifs better classified in the two databases were docked into the three-dimensional (3D) structure of MHC (class I and II) complex to verify the calculated binding affinity. The binding interactions regarding the molecular recognition process by T-cells were also exploited through the MHC:ligand:T-cell complexes. Results: Regarding the Kunitz-type sequence, four motifs were identified as potentially epitopes for MHC-I and three motifs were found for MHC-II. But, those motifs were classified as moderately immunogenic. Final remarks: The combined computer-aided protocol has significantly reduced the number of potential epitopes to be considered for further analysis and could be useful to identify immunogenic fragments (high, moderate and low) in protein pharmaceutics before in vitro/in vivo experimentation.

12.
Eur. J. Med. Chem. ; 144: p. 29-40, 2018.
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib14961

RESUMEN

Chagas disease, caused by the protozoan Trypanosoma cruzi, is a neglected chronic tropical infection endemic in Latin America. New and effective treatments are urgently needed because the two available drugs - benznidazole (BZD) and nifurtimox (NFX) - have limited curative power in the chronic phase of the disease. We have previously reported the design and synthesis of N'-[(5-nitrofuran-2-yl) methylene] substituted hydrazides that showed high trypanocidal activity against axenic epimastigote forms of three T cruzi strains. Here we show that these compounds are also active against a BZD- and NFX-resistant strain. Herein, multivariate approaches (hierarchical cluster analysis and principal component analysis) were applied to a set of thirty-six formerly characterized compounds. Based on the findings from exploratory data analysis, novel compounds were designed and synthesized. These compounds showed two-to three-fold higher trypanocidal activity against epimastigote forms than the previous set and were 25-30-fold more active than BZD. Their activity was also evaluated against intracellular amastigotes by high content screening (HCS). The most active compounds (BSF-38 to BSF-40) showed a selective index (SI') greater than 200, in contrast to the SI' values of reference drugs (NFX, 16.45; BZD, > 3), and a 70-fold greater activity than BZD. These findings indicate that nitrofuran compounds designed based on the activity against epimastigote forms show promising trypanocidal activity against intracellular amastigotes, which correspond to the predominant parasite stage in the chronic phase of Chagas disease.

13.
J Pharm Pharm Sci, v. 21, p. 268-285, 2018
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2551

RESUMEN

Background: The identification of fragment sequences, or motifs, within a therapeutic protein that may elicit an immune response when processed by T-cells can be provided by computer-aided approaches. Immunogenicity is a significant problem associated with protein therapeutics and should be investigated in the early stage of protein-based drug development to avoid treatment resistance and potentially life-threatening immune responses. Purpose: To provide a combined computer-aided protocol for investigating the immunogenic profile of a recombinant Kunitz-type inhibitor, which has been reported as promising antitumor agent by our research group. Methods: The combination of databases searching (IEDB and SYFPEITHI) and molecular docking simulations was exploited, herein. This combined protocol has allowed the identification of potential epitopes before in vitro/in vivo evaluation. Predictors of human proteasome cleavage transport and major histocompatibility complex (MHC) binding were considered as overall score assigning the corresponding intrinsic potential of being a T cell epitope to each fragment sequence. The peptides or motifs better classified in the two databases were docked into the three-dimensional (3D) structure of MHC (class I and II) complex to verify the calculated binding affinity. The binding interactions regarding the molecular recognition process by T-cells were also exploited through the MHC:ligand:T-cell complexes. Results: Regarding the Kunitz-type sequence, four motifs were identified as potentially epitopes for MHC-I and three motifs were found for MHC-II. But, those motifs were classified as moderately immunogenic. Final remarks: The combined computer-aided protocol has significantly reduced the number of potential epitopes to be considered for further analysis and could be useful to identify immunogenic fragments (high, moderate and low) in protein pharmaceutics before in vitro/in vivo experimentation.

14.
Eur J Med Chem, v. 144, p. 29-40, jan. 2018
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2432

RESUMEN

Chagas disease, caused by the protozoan Trypanosoma cruzi, is a neglected chronic tropical infection endemic in Latin America. New and effective treatments are urgently needed because the two available drugs - benznidazole (BZD) and nifurtimox (NFX) - have limited curative power in the chronic phase of the disease. We have previously reported the design and synthesis of N'-[(5-nitrofuran-2-yl) methylene] substituted hydrazides that showed high trypanocidal activity against axenic epimastigote forms of three T cruzi strains. Here we show that these compounds are also active against a BZD- and NFX-resistant strain. Herein, multivariate approaches (hierarchical cluster analysis and principal component analysis) were applied to a set of thirty-six formerly characterized compounds. Based on the findings from exploratory data analysis, novel compounds were designed and synthesized. These compounds showed two-to three-fold higher trypanocidal activity against epimastigote forms than the previous set and were 25-30-fold more active than BZD. Their activity was also evaluated against intracellular amastigotes by high content screening (HCS). The most active compounds (BSF-38 to BSF-40) showed a selective index (SI') greater than 200, in contrast to the SI' values of reference drugs (NFX, 16.45; BZD, > 3), and a 70-fold greater activity than BZD. These findings indicate that nitrofuran compounds designed based on the activity against epimastigote forms show promising trypanocidal activity against intracellular amastigotes, which correspond to the predominant parasite stage in the chronic phase of Chagas disease.

15.
Artículo en Inglés | MEDLINE | ID: mdl-28031734

RESUMEN

BACKGROUND: Hemolin proteins are cell adhesion molecules from lepidopterans involved in a wide range of cell interactions concerning their adhesion properties. However, hemolin's roles in cell proliferation and wound healing are not fully elucidated. It has been recently reported that rLosac, a recombinant hemolin from the caterpillar Lonomia obliqua, presents antiapoptotic activity and is capable of improving in vitro wound healing. Therefore, this study aimed to explore rLosac's in vivo effects using a skin wound healing model in rats. METHODS: Circular full-thickness wounds in the rat dorsum skin were treated either with rLosac, or with saline (control), allowing healing by keeping the wounds occluded and moist. During the wound healing, the following tissue regeneration parameters were evaluated: wound closure and collagen content. Furthermore, tissue sections were subjected to histological and immunohistochemical analyses. RESULTS: The rLosac treatment has demonstrated its capacity to improve wound healing, as reflected in findings of a larger number of activated fibroblasts, proliferation of epithelial cells, increase of collagen type 1, and decrease of inflammatory infiltrate. CONCLUSION: The findings have indicated the rLosac protein as a very promising molecule for the development of new wound-healing formulations.

16.
Phytomedicine ; 23(7): 725-35, 2016 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-27235711

RESUMEN

BACKGROUND: Eugenol (EUG) is a major phenolic compound present in clove whose anti-cancer properties have been demonstrated previously. These anti-cancer properties may involves the modulation of different mechanisms, including α-estrogen receptor (αER) in luminal breast cancer cells, COX-2 inhibition in melanoma cells or p53 and caspase-3 activation in colon cancer cells. HYPOTHESIS: EUG promotes a burst in ROS production causing cell-cycle perturbations, mitochondria toxicity and clastogenesis triggering apoptosis in melanoma breast- and cervix-cancer cells in vitro. METHODS: Morphological changes were evaluated through the light- and electronic- microscopy. Cell-cycle, ROS, PCNA and Apoptosis was detected by flow cytometry and clastogenicity was evaluated by Comet-assay. RESULTS: The results obtained herein pointed out that EUG promotes, increasing ROS production leading to abrogation of G2/M of phase of cell-cycle, and consecutively, clastogenesis in vitro. In addition, EUG induces Proliferation Cell Nuclear Antigen (PCNA) downregulation and decreasing in mitochondria potential (ΔΨm). Of note, a Bax up-regulation was also observed on cells treated with EUG. All of these findings cooperate in order to induce apoptosis in cancer cells. CONCLUSION: These promising results presented herein shed new light on the mechanisms of action of EUG suggesting a possible applicability of this phenylpropanoid as adjuvant in anti-cancer therapy.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , División Celular/efectos de los fármacos , Eugenol/farmacología , Fase G2/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mutágenos/toxicidad , Neoplasias/patología , Línea Celular Tumoral , Ensayo Cometa , Femenino , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Antígeno Nuclear de Célula en Proliferación/metabolismo , Especies Reactivas de Oxígeno/metabolismo
17.
Toxicol Appl Pharmacol ; 295: 56-67, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26876618

RESUMEN

Benzofuroxan is an interesting ring system, which has shown a wide spectrum of biological responses against tumor cell lines. We investigated, herein, the antitumor effects of benzofuroxan derivatives (BFDs) in vitro and in a melanoma mouse model. Cytotoxic effects of twenty-two BFDs were determined by MTT assay. Effects of BFD-22 in apoptosis and cell proliferation were evaluated using Annexin V-FITC/PI and CFSE staining. In addition, the effects in the cell cycle were assessed. Flow cytometry, western blot, and fluorescence microscopy analysis were employed to investigate the apoptosis-related proteins and the BRAF signaling. Cell motility was also exploited through cell invasion and migration assays. Molecular docking approach was performed in order to verify the BFD-22 binding mode into the ATP catalytic site of BRAF kinase. Moreover, the BFD-22 antitumor effects were evaluated in a melanoma murine model using B16F10. BFD-22 was identified as a potential hit against melanoma cells. BFD-22 induced apoptosis and inhibited cell proliferation of B16F10 cells. BFD-22 has suppressed, indeed, the migratory and invasive behavior of B16F10 cells. Cyclin D1 and CDK4 expression were reduced leading to cell cycle arrest at G0/G1 phase. Of note, phosphorylation of BRAF at Ser338 was strongly down-regulated by BFD-22 in B16F10 cells. The accommodation/orientation into the binding site of BRAF was similar of BAY43-9006 (co-crystallized inhibitor of BRAF, sorafenib). Importantly, BFD-22 presented in vivo antimetastatic effects and showed better therapeutic efficacy than sorafenib and taxol. BFD-22 can be considered as a new lead compound and, then, can be helpful for the designing of novel drug candidates to treat melanoma.


Asunto(s)
Supervivencia Celular/efectos de los fármacos , Hidrazinas/farmacología , Melanoma Experimental/inmunología , Oxadiazoles/farmacología , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Animales , Apoptosis/efectos de los fármacos , Benzoxazoles , Western Blotting , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ciclina D1/biosíntesis , Quinasa 4 Dependiente de la Ciclina/biosíntesis , Citometría de Flujo , Ratones , Microscopía Fluorescente , Simulación del Acoplamiento Molecular
18.
Biomed Pharmacother ; 77: 14-9, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26796259

RESUMEN

Nowadays, the relationship between cancer blood coagulation is well established. Regarding biodiversity and bioprospection, the tick biology has become quite attractive natural source for coagulation inhibitors, since its saliva has a very rich variety of bioactive molecules. For instance, a Kunitz-type FXa inhibitor, named Amblyomin-X, was found through transcriptome of the salivary gland of the Amblyomma cajennense. tick. This TFPI-like inhibitor, after obtained as recombinant protein, has presented anticoagulant, antigionenic, and antitumor properties. Although its effects on blood coagulation could be relevant for antitumor effect, Amblyomin-X acts by non-hemostatic mechanisms, such as proteasome inhibition and autophagy inhibition. Notably, cytotoxicity was not observed on non-tumor cells treated with this protein, suggesting some selectivity for tumor cells. Considering the current efforts in order to develop effective anticancer therapies, the findings presented in this review strongly suggest Amblyomin-X as a promising novel antitumor drug candidate.


Asunto(s)
Anticoagulantes/farmacología , Antineoplásicos/farmacología , Proteínas y Péptidos Salivales/farmacología , Garrapatas , Animales , Proteínas de Artrópodos , Línea Celular Tumoral , Inhibidores del Factor Xa/farmacología , Humanos , Ratones , Proteínas Recombinantes
19.
J. Venomous Anim. Toxins Incl. Trop. Dis ; 22: Número do artigo: 36, 2016.
Artículo | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib14629

RESUMEN

Background: Hemolin proteins are cell adhesion molecules from lepidopterans involved in a wide range of cell interactions concerning their adhesion properties. However, hemolin's roles in cell proliferation and wound healing are not fully elucidated. It has been recently reported that rLosac, a recombinant hemolin from the caterpillar Lonomia obliqua, presents antiapoptotic activity and is capable of improving in vitro wound healing. Therefore, this study aimed to explore rLosac's in vivo effects using a skin wound healing model in rats. Methods: Circular full-thickness wounds in the rat dorsum skin were treated either with rLosac, or with saline (control), allowing healing by keeping the wounds occluded and moist. During the wound healing, the following tissue regeneration parameters were evaluated: wound closure and collagen content. Furthermore, tissue sections were subjected to histological and immunohistochemical analyses. Results: The rLosac treatment has demonstrated its capacity to improve wound healing, as reflected in findings of a larger number of activated fibroblasts, proliferation of epithelial cells, increase of collagen type 1, and decrease of inflammatory infiltrate. Conclusion: The findings have indicated the rLosac protein as a very promising molecule for the development of new wound-healing formulations


Asunto(s)
Bioquímica , Biología Celular
20.
Pharmacol. Res ; 112: p. 30-36, 2016.
Artículo | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib14205

RESUMEN

Animal toxins present high selectivity and specificity for their molecular targets, and have long been considered as prototypes for developing novel drugs, with some successful cases. In this regard, the variety of molecules found in animal venoms, which can be capable of affecting vital physiological systems, have providing the development of studies focusing on turning those molecules (toxins) into therapeutics to treat several diseases, such as chronic pain, hypertension, thrombosis, cancer, and so on. However, some important issues have been responsible for disrupting the toxin-based drug discovery projects. In this review, we have briefly highlighted the development of drugs based on animal toxins, discussing some successful cases as well as the main causes of failure, pointing out the recent strategies applied to overcome the difficulties related to the translational process in this kind of development scenario. (C) 2016 Elsevier Ltd. All rights reserved.


Asunto(s)
Toxicología , Farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...